Efficient time-series detection of the strong stochasticity threshold in Fermi-Pasta-Ulam oscillator lattices.

نویسندگان

  • M Romero-Bastida
  • Alan Yoshio Reyes-Martínez
چکیده

In this work we study the possibility of detecting the so-called strong stochasticity threshold (i.e., the transition between weak and strong chaos as the energy density of the system is increased) in anharmonic oscillator chains by means of the 0-1 test for chaos. We compare the result of the aforementioned methodology with the scaling behavior of the largest Lyapunov exponent computed by means of tangent space dynamics, which has, so far, been the most reliable method available to detect the strong stochasticity threshold. We find that indeed the 0-1 test can perform the detection in the range of energy density values studied. Furthermore, we determined that conventional nonlinear time series analysis methods fail to properly compute the largest Lyapounov exponent even for very large data sets, whereas the computational effort of the 0-1 test remains the same in the whole range of values of the energy density considered with moderate size time series. Therefore, our results show that, for a qualitative probing of phase space, the 0-1 test can be an effective tool if its limitations are properly taken into account.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

q-Breathers and the Fermi-Pasta-Ulam problem.

The Fermi-Pasta-Ulam (FPU) paradox consists of the non-equipartition of energy among normal modes of a weakly anharmonic atomic chain model. In the harmonic limit each normal mode corresponds to a periodic orbit in phase space and is characterized by its wave number q. We continue normal modes from the harmonic limit into the FPU parameter regime and obtain persistence of these periodic orbits,...

متن کامل

Studies of thermal conductivity in Fermi-Pasta-Ulam-like lattices.

The pioneering computer simulations of the energy relaxation mechanisms performed by Fermi, Pasta, and Ulam (FPU) can be considered as the first attempt of understanding energy relaxation and thus heat conduction in lattices of nonlinear oscillators. In this paper we describe the most recent achievements about the divergence of heat conductivity with the system size in one-dimensional (1D) and ...

متن کامل

Detecting chaos, determining the dimensions of tori and predicting slow diffusion in Fermi–Pasta–Ulam lattices by the Generalized Alignment Index method

The recently introduced GALI method is used for rapidly detecting chaos, determining the dimensionality of regular motion and predicting slow diffusion in multi–dimensional Hamiltonian systems. We propose an efficient computation of the GALIk indices, which represent volume elements of k randomly chosen deviation vectors from a given orbit, based on the Singular Value Decomposition (SVD) algori...

متن کامل

Efficient Integration of the variational equations of Multidimensional Hamiltonian Systems: Application to the Fermi-PASTA-Ulam Lattice

We study the problem of efficient integration of variational equations in multi-dimensional Hamiltonian systems. For this purpose, we consider a Runge-Kutta-type integrator, a Taylor series expansion method and the so-called ‘Tangent Map’ (TM) technique based on symplectic integration schemes, and apply them to the Fermi-Pasta-Ulam β (FPU-β) lattice of N nonlinearly coupled oscillators, with N ...

متن کامل

Discrete breathers in Fermi-Pasta-Ulam lattices.

We study the properties of spatially localized and time-periodic excitations--discrete breathers--in Fermi-Pasta-Ulam (FPU) chains. We provide a detailed analysis of their spatial profiles and stability properties. We especially demonstrate that the Page mode is linearly stable for symmetric FPU potentials. A resonant interaction between a localized and delocalized perturbations causes weak but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 83 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2011